Dunedin Brain Imaging Study MRI Protocol

Executive Control Paradigm

Executive Control Paradigm (Stroop Task)

In this version of the Stroop paradigm, participants identified the color of a target word in the center of a screen by selecting 1 of 4 identifier words. Selections were made by pressing 1 of 4 buttons on a button box, with each button matching an identifier word on the screen (e.g., index finger button 1 = identifier word on the far left, etc.). In congruent trials, targets were in colors congruent with the target words; in incongruent trials, targets were in colors incongruent with the targets. The four identifier words were in white in both conditions. After a 2 s fixation lead in, participants completed three 60 s blocks of congruent trials interleaved with three 60 s blocks of incongruent trials. Both conditions were followed by an 8 s fixation period for a total task time of 6 min and 50 s. Each block contained 12 trials, each consisting of 2 s stimuli, 1 s feedback, and a variable inter stimulus interval averaging 2 s.

BOLD fMRI Data Acquisition

Each participant was scanned using a MAGNETOM Skyra (Siemens Healthcare GmbH) 3T scanner equipped with a 64-channel head/neck coil at the Pacific Radiology Group imaging center in Dunedin, New Zealand. A series of 72 interleaved axial T2-weighted functional slices were acquired using a 3-fold multi-band accelerated echo planar imaging sequence with the following parameters: TR = 2000 ms, TE = 27 msec, flip angle = 90°, field-of-view = 200 mm, voxel size = 2mm isotropic, slice thickness = 2 mm without gap.

BOLD fMRI Data Pre-Processing

Anatomical images for each subject were skull-stripped, intensity-normalized, and nonlinearly warped to a study-specific average template in a standard stereotactic space (Montreal Neurological Institute template) using ANTs (Klein et al., 2009). BOLD time series for each subject were processed in AFNI (Cox, 1996). Images for each subject were despiked, slice-time-corrected, realigned to the first volume in the time series to correct for head motion, corrected for B0 distortions using SPM's fieldmap toolbox (Jezzard and Balaban, 1995), coregistered to the anatomical image using FSL's Boundary Based Registration (Greve and Fischl, 2009), spatially normalized into MNI space using the non-linear warp from the anatomical image, and smoothed to minimize noise and residual difference in gyral anatomy with a Gaussian filter, set at 6-mm full-width at half-maximum. All transformations were concatenated so that a single interpolation was performed. Voxel-wise signal intensities were scaled to yield a time series mean of 100 for each voxel. Volumes exceeding 0.5mm frame-wise displacement or 2.5 standardized DVARS (Nichols, 2017; Power et al., 2014) were censored from the GLM.

fMRI Quality Assurance Criteria

(still a work in progress) Quality control criteria for inclusion of a participant's imaging data were: >5 volumes for each condition of interest retained after censoring for FD and DVARS and sufficient temporal SNR within a 10mm radius sphere encompassing the dorsal anterior cingulate cortex (centered at [0 24 38]), defined as greater than 3 standard deviations below the mean of this value across subjects. Additionally, data were only included in further analyses if the participant demonstrated some level of engagement with the task, defined as achieving at least 10% accuracy during the incongruent condition.

BOLD fMRI Data Analysis

The AFNI program 3dREMLfit (Cox, 1996) was used to fit a general linear model for first-level fMRI data analyses. Following preprocessing, linear contrasts employing canonical hemodynamic response functions were used to estimate effects of condition (Incongruent > Congruent) for each individual.

References

Arno Klein, Jesper Andersson, Babak A. Ardekani, John Ashburner, Brian Avants, Ming-Chang Chiang, Gary E. Christensen, D. Louis Collins, James Gee, Pierre Hellier, Joo Hyun Song, Mark Jenkinson, Claude Lepage, Daniel Rueckert, Paul Thompson, Tom Vercauteren, Roger P. Woods, J. John Mann, Ramin V. Parsey, Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, Volume 46, Issue 3, 1 July 2009, Pages 786-802, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2008.12.037. (http://www.sciencedirect.com/science/article/pii/S1053811908012974)

Cox RW (1996): AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res., 29(3):162-173

Jezzard P and Balaban RS (1995) Correction for geometric distortions in echoplanar images from B0 field variations. Magn Reson Med 34:65-73

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1), 63-72. https://doi.org/10.1016/j.neuroimage.2009.06.060

Nichols, T. E. (2017). Notes on Creating a Standardized Version of DVARS, 1-5. Retrieved from http://arxiv.org/abs/1704.01469

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., and Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320-341. doi: 10.1016/j.neuroimage.2013.08.048

Back to paradigms